Geprüft: 28
This is a practical guide to Surface Science for researchers working in the Aviation & Space Industry.
In diesem brandneuen Leitfaden erfährst du alles über:
Lassen Sie uns gleich eintauchen.
The aviation industry and space applications heavily rely on surface science. To meet the demanding conditions of these fields, which involve extreme environments and long-term performance, surfaces and coatings are crucial. In aviation, the characteristics of aircraft parts like turbine blades, airfoils, and engine components significantly impact their performance and lifespan. To enhance their resistance to wear, corrosion, high temperatures, and icing, surface coatings and treatments are applied.
This eventually improves:
We use the important surface properties below to understand the behavior of Aviation & Space products and improve their quality.
Young – Laplace-Methode
Polynomiale Methode
Dynamischer Kontaktwinkel
Wenn wir einen Tropfen auf eine feste Oberfläche geben, besteht im Idealfall ein einzigartiger Winkel zwischen der Flüssigkeit und der festen Oberfläche. Den Wert dieses idealen Kontaktwinkels (den sogenannten Young-Kontaktwinkel) können wir mit Hilfe der Young-Gleichung berechnen. In der Praxis ist der Kontaktwinkelwert auf einer Oberfläche aufgrund der Oberflächengeometrie, Rauheit, Heterogenität, Verschmutzung und Verformung nicht unbedingt eindeutig, sondern liegt innerhalb eines Bereichs. Wir nennen die oberen und unteren Grenzen dieses Bereichs den fortschreitenden Kontaktwinkel bzw. den zurückweichenden Kontaktwinkel. Auch die Werte des vor- und zurückgehenden Kontaktwinkels für einen festen Untergrund sind sehr empfindlich. Sie können von vielen Parametern beeinflusst werden, wie z. B. Temperatur, Luftfeuchtigkeit, Homogenität und kleinste Verschmutzung der Oberfläche und der Flüssigkeit. So können z.B. der vor- und zurückgehende Kontaktwinkel einer Fläche an verschiedenen Stellen unterschiedlich sein.
Praktische Oberflächen und Beschichtungen weisen von Natur aus eine Kontaktwinkelhysterese auf, die auf eine Reihe von Gleichgewichtswerten hinweist. Wenn wir statische Kontaktwinkel messen, erhalten wir einen einzigen Wert innerhalb dieses Bereichs. Sich ausschließlich auf statische Messungen zu verlassen, wirft Probleme auf, wie z. B. schlechte Wiederholgenauigkeit und unvollständige Oberflächenbewertung in Bezug auf Haftung, Sauberkeit, Rauheit und Homogenität.
In der Praxis müssen wir die Leichtigkeit der Flüssigkeitsverteilung (Vorschubwinkel) und die Entfernungsleichtigkeit (Rückzugswinkel) einer Oberfläche verstehen, z. B. beim Lackieren und Reinigen. Die Messung von Vorschub- und Rückzugswinkeln bietet eine ganzheitliche Sicht auf die Flüssig-Feststoff-Wechselwirkung, im Gegensatz zu statischen Messungen, die einen beliebigen Wert innerhalb des Bereichs liefern.
Diese Erkenntnisse sind entscheidend für reale Oberflächen mit Variationen, Rauheit und Dynamik und helfen Branchen wie Kosmetik, Materialwissenschaft und Biotechnologie bei der Gestaltung effektiver Oberflächen und der Optimierung von Prozessen.
Erfahren Sie, wie die Kontaktwinkelmessung mit unserem Tensiometer durchgeführt wird
Für ein vollständigeres Verständnis der Kontaktwinkelmessung lesen Sie unsere Kontaktwinkelmessung: Der endgültige Leitfaden
Diese Eigenschaft misst die Kraft, die auf die Oberfläche einer Flüssigkeit wirkt, mit dem Ziel, ihre Oberfläche zu minimieren.
Dynamische Oberflächenspannung
Die dynamische Oberflächenspannung unterscheidet sich von der statischen Oberflächenspannung, die sich auf die Oberflächenenergie pro Flächeneinheit (oder die Kraft, die pro Längeneinheit entlang des Randes einer flüssigen Oberfläche wirkt) bezieht.
Die statische Oberflächenspannung charakterisiert den Gleichgewichtszustand der Grenzfläche von Flüssigkeiten, während die dynamische Oberflächenspannung die Kinetik von Änderungen an der Grenzfläche berücksichtigt. Diese Veränderungen können das Vorhandensein von Tensiden, Additiven oder Schwankungen in Temperatur, Druck und Zusammensetzung an der Grenzfläche beinhalten.
Die dynamische Oberflächenspannung ist essentiell für Prozesse, die schnelle Änderungen an der Flüssig-Gas- oder Flüssig-Flüssig-Grenzfläche beinhalten, wie z. B. Tröpfchen- und Blasenbildung oder Koaleszenz (Änderung der Oberfläche), Verhalten von Schäumen und Trocknung von Lacken (Änderung der Zusammensetzung, z. B. Verdampfung von Lösungsmittel). Wir messen es, indem wir die Form eines hängenden Tröpfchens im Laufe der Zeit analysieren.
Die dynamische Oberflächenspannung gilt für verschiedene Branchen, darunter Kosmetika, Beschichtungen, Pharmazeutika, Farben, Lebensmittel und Getränke sowie industrielle Prozesse, in denen das Verständnis und die Kontrolle des Verhaltens von Flüssigkeitsgrenzflächen für die Produktqualität und Prozesseffizienz unerlässlich ist.
Erfahren Sie, wie die Messung der Oberflächenspannung mit unserem Tensiometer durchgeführt wird
Für ein vollständigeres Verständnis der Oberflächenenergiemessung lesen Sie unsere Oberflächenspannungsmessung: Der endgültige Leitfaden
Erfahren Sie, wie die Messung der Oberflächenenergie mit unserem Tensiometer durchgeführt wird
Für ein umfassenderes Verständnis der Oberflächenenergiemessung lesen Sie unsere Oberflächenenergiemessung: Der ultimative Leitfaden
Der Gleitwinkel misst den Winkel, in dem ein flüssiger Film über eine feste Oberfläche gleitet. Es wird häufig verwendet, um die Rutschhemmung einer Oberfläche zu beurteilen.
Erfahren Sie, wie die Gleitwinkelmessung mit unserem Tensiometer durchgeführt wird
Für ein umfassenderes Verständnis der Gleitwinkelmessung lesen Sie unsere Gleitwinkelmessung: Der endgültige Leitfaden
Within the Aviation & Space industry, several case studies exemplify the advantages of conducting surface property measurements.
Think about it: Airplane paint isn’t just for looks. Weighing in at a hefty 500 kg, it significantly impacts the aircraft’s fuel consumption.
But it goes beyond weight management. Paint acts as the aircraft’s first line of defense against often-overlooked enemies like corrosive rain and harsh UV radiation.
Therefore, aircraft paint needs to meet several crucial demands: high surface energy, excellent wettability, and minimal weight. At Droplet Lab, our tensiometer helps strike this delicate balance, resulting in aircraft paints that are both durable and fuel-efficient.
Space provides a radically different setting than Earth, affecting everything it touches, including cell culture systems. The unique thermodynamics and mechanics of space make standard ground-based cell culture systems unpredictable. Microgravity and the absence of buoyancy-driven convection cause deviations in behavior. To address these changes, modern research focuses on understanding the dynamics of contact angles and surface properties of cell culture media. By providing researchers with the right tools, such as our tensiometer, we help them optimize space-bound cell culture systems and ensure their findings are accurate and actionable.
Wenn Sie an der Implementierung dieser oder anderer Anwendungen interessiert sind, kontaktieren Sie uns bitte.
In an industry where precision reigns supreme, where do Aviation & Space manufacturers turn to ensure their products can survive scrutiny? The answer lies in standards and guidelines: the compass that guides cosmetics manufacturers through the complex maze of quality and performance.
This test method is rapid, nondestructive, and may be used for the control and evaluation of processes for the removal of hydrophobic contaminants.
The test is to provide a controlled accelerated corrosive environment to evaluate the relative corrosion resistance of the coating, substrate, or part itself.
This applies to water and is applicable only to potable water and high-purity demineralized or deionized water, used for cooling and servicing in space systems.
Wir hoffen, dass dieser Leitfaden Ihnen gezeigt hat, wie Sie die Oberflächenwissenschaft in der Kosmetikindustrie anwenden können.
Nun möchten wir das Wort an Sie übergeben:
Droplet Lab wurde 2016 von Dr. Alidad Amirfazli, Fakultätsmitglied an der York University, und zwei seiner Forscher, Dr. Huanchen Chen und Dr. Jesus L. Muros-Cobos, gegründet.
Dropletlab © 2024 Alle Rechte vorbehalten.