Geprüft: 28
This is a practical guide to Surface Science for researchers working in the Chemicals Industry.
In diesem brandneuen Leitfaden erfährst du alles über:
Lassen Sie uns gleich eintauchen.
The surface properties of materials significantly impact the chemical industry, influencing product quality, performance, and consumer satisfaction. Understanding surface tension, contact angle, sliding angle, and surface energy enables the development of chemicals and materials with superior adhesion, dispersibility, and stability.
In addressing the chemical industry’s challenges—such as creating high-performance products, and ensuring product stability and longevity—precision, innovation, and efficiency are essential. Surface science offers critical insights into surface interactions, interfacial phenomena, and material compatibility, providing a foundation for optimizing chemical production methodologies.
We use the important surface properties below to understand the behavior of Chemicals products and improve their quality.
Young – Laplace-Methode
Polynomiale Methode
Dynamischer Kontaktwinkel
Wenn wir einen Tropfen auf eine feste Oberfläche geben, besteht im Idealfall ein einzigartiger Winkel zwischen der Flüssigkeit und der festen Oberfläche. Den Wert dieses idealen Kontaktwinkels (den sogenannten Young-Kontaktwinkel) können wir mit Hilfe der Young-Gleichung berechnen. In der Praxis ist der Kontaktwinkelwert auf einer Oberfläche aufgrund der Oberflächengeometrie, Rauheit, Heterogenität, Verschmutzung und Verformung nicht unbedingt eindeutig, sondern liegt innerhalb eines Bereichs. Wir nennen die oberen und unteren Grenzen dieses Bereichs den fortschreitenden Kontaktwinkel bzw. den zurückweichenden Kontaktwinkel. Auch die Werte des vor- und zurückgehenden Kontaktwinkels für einen festen Untergrund sind sehr empfindlich. Sie können von vielen Parametern beeinflusst werden, wie z. B. Temperatur, Luftfeuchtigkeit, Homogenität und kleinste Verschmutzung der Oberfläche und der Flüssigkeit. So können z.B. der vor- und zurückgehende Kontaktwinkel einer Fläche an verschiedenen Stellen unterschiedlich sein.
Praktische Oberflächen und Beschichtungen weisen von Natur aus eine Kontaktwinkelhysterese auf, die auf eine Reihe von Gleichgewichtswerten hinweist. Wenn wir statische Kontaktwinkel messen, erhalten wir einen einzigen Wert innerhalb dieses Bereichs. Sich ausschließlich auf statische Messungen zu verlassen, wirft Probleme auf, wie z. B. schlechte Wiederholgenauigkeit und unvollständige Oberflächenbewertung in Bezug auf Haftung, Sauberkeit, Rauheit und Homogenität.
In der Praxis müssen wir die Leichtigkeit der Flüssigkeitsverteilung (Vorschubwinkel) und die Entfernungsleichtigkeit (Rückzugswinkel) einer Oberfläche verstehen, z. B. beim Lackieren und Reinigen. Die Messung von Vorschub- und Rückzugswinkeln bietet eine ganzheitliche Sicht auf die Flüssig-Feststoff-Wechselwirkung, im Gegensatz zu statischen Messungen, die einen beliebigen Wert innerhalb des Bereichs liefern.
Diese Erkenntnisse sind entscheidend für reale Oberflächen mit Variationen, Rauheit und Dynamik und helfen Branchen wie Kosmetik, Materialwissenschaft und Biotechnologie bei der Gestaltung effektiver Oberflächen und der Optimierung von Prozessen.
Erfahren Sie, wie die Kontaktwinkelmessung mit unserem Tensiometer durchgeführt wird
Für ein vollständigeres Verständnis der Kontaktwinkelmessung lesen Sie unsere Kontaktwinkelmessung: Der endgültige Leitfaden
Diese Eigenschaft misst die Kraft, die auf die Oberfläche einer Flüssigkeit wirkt, mit dem Ziel, ihre Oberfläche zu minimieren.
Dynamische Oberflächenspannung
Die dynamische Oberflächenspannung unterscheidet sich von der statischen Oberflächenspannung, die sich auf die Oberflächenenergie pro Flächeneinheit (oder die Kraft, die pro Längeneinheit entlang des Randes einer flüssigen Oberfläche wirkt) bezieht.
Die statische Oberflächenspannung charakterisiert den Gleichgewichtszustand der Grenzfläche von Flüssigkeiten, während die dynamische Oberflächenspannung die Kinetik von Änderungen an der Grenzfläche berücksichtigt. Diese Veränderungen können das Vorhandensein von Tensiden, Additiven oder Schwankungen in Temperatur, Druck und Zusammensetzung an der Grenzfläche beinhalten.
Die dynamische Oberflächenspannung ist essentiell für Prozesse, die schnelle Änderungen an der Flüssig-Gas- oder Flüssig-Flüssig-Grenzfläche beinhalten, wie z. B. Tröpfchen- und Blasenbildung oder Koaleszenz (Änderung der Oberfläche), Verhalten von Schäumen und Trocknung von Lacken (Änderung der Zusammensetzung, z. B. Verdampfung von Lösungsmittel). Wir messen es, indem wir die Form eines hängenden Tröpfchens im Laufe der Zeit analysieren.
Die dynamische Oberflächenspannung gilt für verschiedene Branchen, darunter Kosmetika, Beschichtungen, Pharmazeutika, Farben, Lebensmittel und Getränke sowie industrielle Prozesse, in denen das Verständnis und die Kontrolle des Verhaltens von Flüssigkeitsgrenzflächen für die Produktqualität und Prozesseffizienz unerlässlich ist.
Erfahren Sie, wie die Messung der Oberflächenspannung mit unserem Tensiometer durchgeführt wird
Für ein vollständigeres Verständnis der Oberflächenenergiemessung lesen Sie unsere Oberflächenspannungsmessung: Der endgültige Leitfaden
Erfahren Sie, wie die Messung der Oberflächenenergie mit unserem Tensiometer durchgeführt wird
Für ein umfassenderes Verständnis der Oberflächenenergiemessung lesen Sie unsere Oberflächenenergiemessung: Der ultimative Leitfaden
Der Gleitwinkel misst den Winkel, in dem ein flüssiger Film über eine feste Oberfläche gleitet. Es wird häufig verwendet, um die Rutschhemmung einer Oberfläche zu beurteilen.
Erfahren Sie, wie die Gleitwinkelmessung mit unserem Tensiometer durchgeführt wird
Für ein umfassenderes Verständnis der Gleitwinkelmessung lesen Sie unsere Gleitwinkelmessung: Der endgültige Leitfaden
Within the Chemicals industry, several case studies exemplify the advantages of conducting surface property measurements.
In the dynamic and ever-evolving chemical industry, achieving a uniform dispersion of nanoparticles is a challenging task that often determines the effectiveness of a formulation. Imagine a scenario where nanoparticles, commonly used to enhance the performance or appearance of a product, tend to aggregate, leading to non-uniform distributions within the formulation. This aggregation not only reduces the product’s efficacy but also poses challenges in the manufacturing process.
By precisely manipulating surface properties such as wettability and surface energy, nanoparticles can achieve a homogeneous dispersion throughout the formulation. This uniform dispersion is crucial for ensuring consistent product quality and performance. The benefits of this precise control go beyond achieving uniformity. Improved nanoparticle dispersibility enhances product stability, shelf life, and overall effectiveness, providing a significant competitive advantage in the market.
In the field of coatings and adhesives, adhesion is critically important as it can significantly impact a product’s effectiveness. Consider a situation where the bonding between a coating and its underlying substrate is suboptimal, leading to issues such as peeling, delamination, or reduced longevity. By accurately measuring contact angles and understanding the interactions at the interface between the coating and substrate, you can make informed decisions on modifying surface properties.
Enhanced adhesion is achieved by strategically adjusting the surface properties of coatings to increase compatibility with substrates. This not only improves the product’s performance but also extends its lifespan, enhancing the durability and efficacy of products across various industries, including automotive, construction, and others that heavily rely on coatings and adhesives.
Ein Chemieunternehmen steht vor der Herausforderung, angesichts wachsender Umweltbedenken, strenger Vorschriften und sich ändernder Kundenpräferenzen hin zu umweltfreundlichen Produkten auf nachhaltige Methoden umzusteigen. Um diese Herausforderung zu meistern, nutzt das Unternehmen die Oberflächenwissenschaft als transformatives Werkzeug.
Die Messung des Kontaktwinkels und der Oberflächenspannung spielt dabei eine entscheidende Rolle, indem sie genaue Einblicke in die Oberflächeneigenschaften von Materialien liefert. Diese Messungen helfen dem Unternehmen, die Benetzungseigenschaften und Wechselwirkungen von Rohstoffen zu bewerten und zu optimieren, was zur Entwicklung effizienterer Katalysatoren führt. Durch das Verständnis und die Manipulation dieser Oberflächeneigenschaften können Forscher die Effizienz des Katalysators verbessern, Abfall reduzieren und den Energieverbrauch senken, was den Prinzipien der nachhaltigen Produktion entspricht.
Dadurch reduziert das Unternehmen seine Umweltbelastung erheblich, übertrifft die gesetzlichen Anforderungen und positioniert sich als führend in der umweltverträglichen Herstellung von Chemikalien. Dieser Wandel kommt nicht nur der Umwelt zugute, sondern führt auch zu Kosteneinsparungen, Marktexpansion und einem gestärkten Markenimage, da die Verbraucher zunehmend Produkte bevorzugen, die Nachhaltigkeitsstandards einhalten.
Wenn Sie an der Implementierung dieser oder anderer Anwendungen interessiert sind, kontaktieren Sie uns bitte.
In an industry where precision reigns supreme, where do Chemicals manufacturers turn to ensure their products can survive scrutiny? The answer lies in standards and guidelines: the compass that guides cosmetics manufacturers through the complex maze of quality and performance.
Indirectly related to surface science and the characteristics of material surfaces, even while the primary emphasis of ASTM F3122-14(2022) is on assessing the mechanical properties of metal materials that have been generated by additive manufacturing procedures, the standard does include this topic. During the process of additive manufacturing, individual layers of material are deposited in order to construct the end product. When it comes to establishing the mechanical qualities and surface quality of the produced product, these layers, and more specifically the interfaces that separate them, play an extremely important role.
Wir hoffen, dass dieser Leitfaden Ihnen gezeigt hat, wie Sie die Oberflächenwissenschaft in der Kosmetikindustrie anwenden können.
Nun möchten wir das Wort an Sie übergeben:
Droplet Lab wurde 2016 von Dr. Alidad Amirfazli, Fakultätsmitglied an der York University, und zwei seiner Forscher, Dr. Huanchen Chen und Dr. Jesus L. Muros-Cobos, gegründet.
Dropletlab © 2024 Alle Rechte vorbehalten.