Geprüft: 28
This is a practical guide to Surface Science for researchers working in the Medical Device Industry.
In diesem brandneuen Leitfaden erfährst du alles über:
Lassen Sie uns gleich eintauchen.
The efficient and reliable functioning of medical devices greatly depends on selecting the right materials and understanding their interactions within the device and with the surroundings. For example, materials should have good strength, durability, and minimal issues with corrosion resistance. Different surface properties, such as contact angle, sliding angle, surface energy, and surface tension, play a key role in performance and safety. These properties influence the biocompatibility, adhesion, wear resistance, and antifouling characteristics of medical devices.
We use the important surface properties below to understand the behavior of Medical Device products and improve their quality.
Young – Laplace-Methode
Polynomiale Methode
Dynamischer Kontaktwinkel
Wenn wir einen Tropfen auf eine feste Oberfläche geben, besteht im Idealfall ein einzigartiger Winkel zwischen der Flüssigkeit und der festen Oberfläche. Den Wert dieses idealen Kontaktwinkels (den sogenannten Young-Kontaktwinkel) können wir mit Hilfe der Young-Gleichung berechnen. In der Praxis ist der Kontaktwinkelwert auf einer Oberfläche aufgrund der Oberflächengeometrie, Rauheit, Heterogenität, Verschmutzung und Verformung nicht unbedingt eindeutig, sondern liegt innerhalb eines Bereichs. Wir nennen die oberen und unteren Grenzen dieses Bereichs den fortschreitenden Kontaktwinkel bzw. den zurückweichenden Kontaktwinkel. Auch die Werte des vor- und zurückgehenden Kontaktwinkels für einen festen Untergrund sind sehr empfindlich. Sie können von vielen Parametern beeinflusst werden, wie z. B. Temperatur, Luftfeuchtigkeit, Homogenität und kleinste Verschmutzung der Oberfläche und der Flüssigkeit. So können z.B. der vor- und zurückgehende Kontaktwinkel einer Fläche an verschiedenen Stellen unterschiedlich sein.
Praktische Oberflächen und Beschichtungen weisen von Natur aus eine Kontaktwinkelhysterese auf, die auf eine Reihe von Gleichgewichtswerten hinweist. Wenn wir statische Kontaktwinkel messen, erhalten wir einen einzigen Wert innerhalb dieses Bereichs. Sich ausschließlich auf statische Messungen zu verlassen, wirft Probleme auf, wie z. B. schlechte Wiederholgenauigkeit und unvollständige Oberflächenbewertung in Bezug auf Haftung, Sauberkeit, Rauheit und Homogenität.
In der Praxis müssen wir die Leichtigkeit der Flüssigkeitsverteilung (Vorschubwinkel) und die Entfernungsleichtigkeit (Rückzugswinkel) einer Oberfläche verstehen, z. B. beim Lackieren und Reinigen. Die Messung von Vorschub- und Rückzugswinkeln bietet eine ganzheitliche Sicht auf die Flüssig-Feststoff-Wechselwirkung, im Gegensatz zu statischen Messungen, die einen beliebigen Wert innerhalb des Bereichs liefern.
Diese Erkenntnisse sind entscheidend für reale Oberflächen mit Variationen, Rauheit und Dynamik und helfen Branchen wie Kosmetik, Materialwissenschaft und Biotechnologie bei der Gestaltung effektiver Oberflächen und der Optimierung von Prozessen.
Erfahren Sie, wie die Kontaktwinkelmessung mit unserem Tensiometer durchgeführt wird
Für ein vollständigeres Verständnis der Kontaktwinkelmessung lesen Sie unsere Kontaktwinkelmessung: Der endgültige Leitfaden
Diese Eigenschaft misst die Kraft, die auf die Oberfläche einer Flüssigkeit wirkt, mit dem Ziel, ihre Oberfläche zu minimieren.
Dynamische Oberflächenspannung
Die dynamische Oberflächenspannung unterscheidet sich von der statischen Oberflächenspannung, die sich auf die Oberflächenenergie pro Flächeneinheit (oder die Kraft, die pro Längeneinheit entlang des Randes einer flüssigen Oberfläche wirkt) bezieht.
Die statische Oberflächenspannung charakterisiert den Gleichgewichtszustand der Grenzfläche von Flüssigkeiten, während die dynamische Oberflächenspannung die Kinetik von Änderungen an der Grenzfläche berücksichtigt. Diese Veränderungen können das Vorhandensein von Tensiden, Additiven oder Schwankungen in Temperatur, Druck und Zusammensetzung an der Grenzfläche beinhalten.
Die dynamische Oberflächenspannung ist essentiell für Prozesse, die schnelle Änderungen an der Flüssig-Gas- oder Flüssig-Flüssig-Grenzfläche beinhalten, wie z. B. Tröpfchen- und Blasenbildung oder Koaleszenz (Änderung der Oberfläche), Verhalten von Schäumen und Trocknung von Lacken (Änderung der Zusammensetzung, z. B. Verdampfung von Lösungsmittel). Wir messen es, indem wir die Form eines hängenden Tröpfchens im Laufe der Zeit analysieren.
Die dynamische Oberflächenspannung gilt für verschiedene Branchen, darunter Kosmetika, Beschichtungen, Pharmazeutika, Farben, Lebensmittel und Getränke sowie industrielle Prozesse, in denen das Verständnis und die Kontrolle des Verhaltens von Flüssigkeitsgrenzflächen für die Produktqualität und Prozesseffizienz unerlässlich ist.
Erfahren Sie, wie die Messung der Oberflächenspannung mit unserem Tensiometer durchgeführt wird
Für ein vollständigeres Verständnis der Oberflächenenergiemessung lesen Sie unsere Oberflächenspannungsmessung: Der endgültige Leitfaden
Erfahren Sie, wie die Messung der Oberflächenenergie mit unserem Tensiometer durchgeführt wird
Für ein umfassenderes Verständnis der Oberflächenenergiemessung lesen Sie unsere Oberflächenenergiemessung: Der ultimative Leitfaden
Der Gleitwinkel misst den Winkel, in dem ein flüssiger Film über eine feste Oberfläche gleitet. Es wird häufig verwendet, um die Rutschhemmung einer Oberfläche zu beurteilen.
Erfahren Sie, wie die Gleitwinkelmessung mit unserem Tensiometer durchgeführt wird
Für ein umfassenderes Verständnis der Gleitwinkelmessung lesen Sie unsere Gleitwinkelmessung: Der endgültige Leitfaden
Within the Medical Device industry, several case studies exemplify the advantages of conducting surface property measurements.
A group of experts actively crafts medical devices like stents and catheters for implantation within the human body. Recognizing the crucial role of surface properties in preventing infections, they meticulously study liquid interactions with these surfaces. This in-depth analysis allows them to design surfaces that repel protein adhesion, ultimately reducing the risk of equipment failure and ensuring smoother patient recoveries.
Imagine a team developing advanced drug delivery systems, like patches that administer medication or implants that gradually release drugs. Their secret weapon for making these systems efficient is measuring surface properties. By analyzing how liquids behave on the surface, the team can fine-tune the design to ensure precise drug release and absorption. This innovation increases treatment effectiveness and enhances patient well-being.
A team is actively developing biodegradable materials for medical use, like sutures and wound dressings. Their goal is to create materials that seamlessly integrate with the body’s natural processes. They achieve this by studying how liquids interact with the surface, allowing them to fine-tune the materials for optimal healing and minimal adverse reactions. This meticulous approach leads to medical solutions that not only promote recovery but also naturally break down over time.
Wenn Sie an der Implementierung dieser oder anderer Anwendungen interessiert sind, kontaktieren Sie uns bitte.
In an industry where precision reigns supreme, where do Medical Device manufacturers turn to ensure their products can survive scrutiny? The answer lies in standards and guidelines: the compass that guides cosmetics manufacturers through the complex maze of quality and performance.
This method provides the procedure of hydrophobic contamination removal with the help of contact angle measurements. This standard is more effective in smooth surfaces and it may not work well in rough or porous surfaces.
This International Standard sets requirements for a quality management system for regulatory purposes. As per this standard, an organization should demonstrate its ability to provide medical devices and related services that regularly meet customer and applicable regulatory requirements.
Wir hoffen, dass dieser Leitfaden Ihnen gezeigt hat, wie Sie die Oberflächenwissenschaft in der Kosmetikindustrie anwenden können.
Nun möchten wir das Wort an Sie übergeben:
Droplet Lab wurde 2016 von Dr. Alidad Amirfazli, Fakultätsmitglied an der York University, und zwei seiner Forscher, Dr. Huanchen Chen und Dr. Jesus L. Muros-Cobos, gegründet.
Dropletlab © 2024 Alle Rechte vorbehalten.